Species difference in the lowering of brain 5-hydroxytryptamine by *m*-chloroamphetamine

Pletscher, Bartholini & others (1964) reported that p-chloromethamphetamine and related compounds caused a lowering of brain 5-hydroxytryptamine (5-HT) in rats and in guinea-pigs. These observations had previously been extended in rats by (Fuller, Hines & Mills, 1965) who found that p-chloroamphetamine was the most active among the series of compounds studied in lowering brain 5-HT and that m-chloroamphetamine did not lower 5-HT. Rats metabolize amphetamine by p-hydroxylation (Dring, Smith & Williams, 1970). The failure of m-chloroamphetamine to lower 5-HT in rats may be attributed to the fact that it is rapidly metabolized by p-hydroxylation, whereas p-chloroamphetamine cannot be so metabolized. I therefore have compared the effects of the compounds in the guinea-pig, which metabolizes amphetamine exclusively by deamination and not by p-hydroxylation (Dring & others, 1970).

Male guinea-pigs, averaging 280 g, or male albino rats, averaging 140 g, were used in groups of 5. Drugs were injected intraperitoneally at 0.1 mmol/kg. Six h after injection of the drugs, or of saline, the animals were decapitated, and the brains were removed and frozen on dry ice. The 5-HT content was measured spectrofluoro-metrically by the *o*-phthalaldehyde condensation method of Maickel & Miller (1966).

In rats, there was a slight but statistically significant (P < 0.005) reduction in brain 5-HT 6 h after *m*-chloroamphetamine. I found earlier that when brain 5-HT was measured 16 h after *m*-chloroamphetamine it was not different from control values at that time. The effect of *p*-chloroamphetamine was significantly greater (P < 0.001) than that of *m*-chloroamphetamine in rats, in agreement with our earlier results. On the contrary, there was no difference in guinea-pigs (0.05 < P) between the effects of *m*-chloroamphetamine and of *p*-chloroamphetamine. The *p*-chloro compound lowered 5-HT in guinea-pigs to an identical extent as in rats (to 29% of the control value), whereas the *m*-chloro compound lowered 5-HT significantly more in guinea-pigs (to 35% of the control value) than in rats (84% of the control value). Control values were for rats 0.63 $\mu g/g$ and for guinea-pigs 0.45 $\mu g/g$.

These results demonstrate that *m*-chloroamphetamine has the potential of lowering brain 5-HT in the same manner as does *p*-chloroamphetamine; that potential is realized in the guinea-pig, a species that does not inactivate the *m*-chloro compound by *p*-hydroxylation. The mechanism by which *p*-chloroamphetamine lowers brain 5-HT (whether by impairment of 5-HT binding or by inhibition of its synthesis) has yet to be established, and the potential of *m*-chloroamphetamine to act in the same manner may be useful information in elucidating the mechanism of action.

I thank Robert J. Schaffer and Harold D. Snoddy for their skilled technical work.

RAY W. FULLER

The Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, U.S.A. September 20, 1971

REFERENCES

DRING, L. G., SMITH, R. & WILLIAMS, R. T. (1970). Biochem. J., 116, 425-435.
FULLER, R. W., HINES, C. W. & MILLS, J. (1965). Biochem. Pharmac., 14, 483-488.
MAICKEL, R. P. & MILLER, F. P. (1966). Analyt. Chem., 38, 1937-1938.
PLETSCHER, A., BARTHOLINI, G., BRUDERER, H., BURKARD, W. P. & GEY, K. F. (1964). J. Pharmac. exp. Ther., 145, 344-350.